Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
B. Sridhar, ${ }^{\text {a }}$ N. Srinivasan ${ }^{\text {b }}$ and R. K. Rajaram ${ }^{\mathbf{a} *}$
${ }^{\text {a }}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India, and
${ }^{\text {b }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.041$
$w R$ factor $=0.118$
Data-to-parameter ratio $=7.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

L-Aspartic acid nitrate-L-aspartic acid (1/1)

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} \cdot \mathrm{NO}_{3}{ }^{-}$, the cation and neutral molecule are connected by an asymmetric hydrogen bond. The cation, residue 1, exists in a gauche I conformation, whereas the neutral molecule, residue 2 , exhibits a gauche II conformation. A syn-syn orientation is also observed in this structure and residue 1 is involved in a straight ($S 1$) head-to-tail sequence. The structure is stabilized by both inter- and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

Aspartic acid is a non-essential amino acid, widely distributed in proteins, which plays a major role in the energy cycle of the human body. The crystal structures of L-aspartic acid (Derissen et al., 1968), DL-aspartic acid (Rao, 1973; Sequeira et al., 1989), Dl-aspartic acid nitrate monohydrate (Asath Bahadur \& Rajaram, 1995) and bis(Dl-aspartic acid) sulfate (Srinivasan et al., 2001) have been reported. In the present paper, the crystal structure of the product, (I), of the reaction of L -aspartic acid with nitric acid is reported.

The asymmetric unit of (I) contains one protonated aspartic acid molecule (residue 1), one neutral aspartic acid molecule (residue 2) and one nitrate anion. Superposition of residue 1 on residue 2 results in an r.m.s. deviation of the constituent atoms of $1.088 \AA$. Examination of the coordinates suggests that the two residues might be related by a pseudo-inversion centre. The unsymmetrical carboxyl bond distances and angles [1.217 (7)/1.297(6) \AA and $\left.122.3(5) / 109.9(5)^{\circ}\right]$ of residue 1 clearly indicate protonation of the carboxyl group, whilst, in the case of residue 2 , the equality of $\mathrm{C}-\mathrm{O}$ bond distances [1.240 (7)/1.250(6) \AA] and $\mathrm{O}-\mathrm{C}-\mathrm{C}$ bond angles [117.4 (5)/ $\left.115.5(5)^{\circ}\right]$ represent the deprotonated carboxylate group (Table 1).

The backbone conformation angle ψ^{1} is the cis form for both residues $\left[\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1-7.0(7)^{\circ}\right.$ and $\mathrm{O} 2 A-$ $\left.\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 21-1.7(7)^{\circ}\right]$. The deviations of the amino atoms N11 and N21 from the planar carboxyl groups at C11 and C22 are 0.198 (8) and 0.044 (1) \AA, respectively. This nonplanarity of the amino nitrogen and carboxyl group is also found in other amino acids (Lakshminarayanan et al., 1967).

Received 31 October 2002 Accepted 6 November 2002 Online 15 November 2002

Figure 1
The molecular structure, with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

Figure 2
Packing diagram of the title molecule, viewed down the a axis.

The side-chain conformation angle χ^{1} is in a gauche I form [66.1 (6) ${ }^{\circ}$] for residue 1 and a gauche II form [-64.8 (6) ${ }^{\circ}$] for residue 2 . The branched chain conformation angles, χ^{11} and χ^{21}, are in cis and trans forms $[10.0(8) /-5.5(8)$ and $\left.-170.8(5) / 174.3(5)^{\circ}\right]$ for both residues. In residue 1 , the C^{γ} atom C14 is in the gauche II [-58.1 (6) ${ }^{\circ}$] conformation with respect to C 11 , while, in the case of residue 2 , the C^{γ} atom C 24 is trans $\left[170.9(5)^{\circ}\right]$ with respect to C21.

The average $\mathrm{N}-\mathrm{O}$ and $\mathrm{O}-\mathrm{N}-\mathrm{O}$ values are $1.248 \AA$ and 120°, respectively, clearly showing the nearly ideal trigonal symmetry of the anion, which plays a vital role in hydrogen bonding and the resulting stabilization of the structure.

The aspartic acid cation and neutral aspartic acid molecule are linked, by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, to form dimers. This hydrogen bond may be termed an asymmetric
hydrogen bond, since the H atom is closer to one of the O atoms of the carboxyl group (Olovsson et al., 2001). Atom $\mathrm{H} 1 B$ is in a syn orientation with respect to both donor carboxyl group and acceptor carboxylate group; the torsion angles $\mathrm{H} 1 B-\mathrm{O} 1 B-\mathrm{C} 11-\mathrm{O} 1 A$ and $\mathrm{H} 1 B-\mathrm{O} 2 B^{\mathrm{i}}-\mathrm{C} 21^{\mathrm{i}}-$ $\mathrm{O} 2 A^{\mathrm{i}}$ [symmetry code: (i) $1+x, y, z$] are 13 (5) and $29(3)^{\circ}$, respectively. This type of syn-syn orientation is also found in betaine betainium oxalate (Rodrigues et al., 2001). The β-carboxyl group of residue 1 forms a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the α-carboxylate group of residue 2 . In the case of residue 2 , the β-carboxyl group forms a rather strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the carbonyl O atom of the β-carboxyl group of residue 1 .

The amino N atom of both residues forms $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the nitrate anion, and the α - and β-carboxyl groups. Three-centred hydrogen bonding is observed in both residues. Interestingly, in residue 1, three such three-centred bonds are observed, leading to a class IV hydrogen-bonding pattern (Jeffrey \& Saenger, 1991). The frequency of such class IV hydrogen-bonding patterns is very low. A class II hydrogen-bonding pattern is observed in residue 2, having two two-centred and one three-centred hydrogen bonds. In both residues, intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is present, involving the amino nitrogen and the carbonyl oxygen of a carboxylic acid group. A straight ($S 1$) head-to-tail sequence is observed in residue 1 , connecting two amino acids separated by a unit translation (Vijayan, 1988). Each aspartic acid residue is linked by the nitrate anion through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, forming a chain running along the a axis: $(a) \mathrm{O} 2(x-1, y, z) \cdots \mathrm{H} 11 B-\mathrm{N} 11-$ $\mathrm{H} 11 A \cdots \mathrm{O} 3(x-2, \quad y, \quad z)$ and (b) $\mathrm{O} 1\left(-\frac{1}{2}-x, 2-y\right.$, $\left.z-\frac{1}{2}\right) \cdots \mathrm{H} 21 A-\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{O} 3\left(\frac{1}{2}-x, 2-y, z-\frac{1}{2}\right)$.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of L-aspartic acid and nitric acid in a 2:1 stoichiometric ratio.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4} \cdot \mathrm{NO}_{3}{ }^{-}$
$M_{r}=329.23$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.5840$ (7) A
$b=11.491$ (3) \AA
$c=21.043$ (5) \AA
$V=1350.2(5) \AA^{3}$
$Z=4$
$D_{x}=1.620 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.58 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.932, T_{\text {max }}=0.968$
1640 measured reflections
1578 independent reflections
929 reflections with $I>2 \sigma(I)$
D_{m} measured by flotation in a mixture of carbon tetrachloride and xylene
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.0-14.7^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$

$$
R_{\mathrm{int}}=0.020
$$

$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 6$
$k=-1 \rightarrow 13$
$l=-1 \rightarrow 24$
3 standard reflections frequency: 60 min intensity decay: none

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.118$
$S=1.02$
1578 reflections
212 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.058 P)^{2}\right. \\
& \quad+0.0829 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA \\
& \Delta \AA_{\min }=-0.30 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.011(3)
\end{aligned}
$$

other H atoms were placed in geometrically calculated positions and included in the refinement in a riding-model approximation, with $U_{\text {iso }}$ equal to $1.2 U_{\text {eq }}$ of the carrier atom (1.5 $U_{\text {eq }}$ for methyl and H atoms attached to nitrogen).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

One of the authors (BS) thanks the Council of Scientific \& Industrial Research (CSIR), Government of India, for financial assistance and the author RKR thanks the Department of Science and Technology (DST), Government of India, for financial support. Financial support from the UGC is also gratefully acknowledged.

References

Asath Bahadur, S. \& Rajaram, R. K. (1995). Z. Kristallogr. 210, 276-278.
Derissen, J. L., Endeman, H. J. \& Peerdeman, A. F. (1968). Acta Cryst. B24, 1349-1354.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lakshminarayanan, A. V., Sashisekaran, V. \& Ramachandran, G. N. (1967). Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. \& Majerz, I. (2001). Acta Cryst. B57, 311-316.
Rao, S. T. (1973). Acta Cryst. B29, 1718-1720.
Rodrigues, V. H., Paixão, J. A., Costa, M. M. R. R. \& Matos Beja, A. (2001). Acta Cryst. C57, 213-215.
Sequeira, A., Rajagopal, H. \& Ramanadham, M. (1989). Acta Cryst. C45, 906908.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Srinivasan, N., Sridhar, B. \& Rajaram, R. K. (2001). Acta Cryst. E57, o679o681.
Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.

